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ABSTRACT 

In this work our aim to achieve a high through put compact.  AES S-Box with 
minimum area consumption. To improve architectures are proposed for 
implementation of S-Box and Inverse S-box needed in the Advanced Encryption Standard 
(AES). Unlike previous work which rely on look-up table to implement the Subbytes and 
Invsubbytes transformations of the AES algorithm the proposed design employs 
Combinational logic only for implementing Subbytes (S-Box) and InvsubBytes (Inverse S-
Box). The resulting hardware requirements are presented for proposed design and 
compared by ROM- based and Pre-Computation technique and improve with this two 
technique a new technique is Galois field arithmetic. 
Keywords- Advanced Encryption Standard, VLSI architectures, Data Encryption, S-Box, 
Sub-byte Encryption  
 

 

INTRODUCTION 
The AES algorithm  is a symmetric block 
cipher that  processes  data  blocks of 
128 bits using a cipher key of length 
128, 192, or 256 bits. Each data block 
consists of a 4 × 4 array of bytes called the 
state, on which the basic operations of 
the AES algorithm  are performed. The 
AES encryp- tion/decryption procedure 
is shown in Fig. 1. After an initial round  
key addition,  a round  func- tion consisting 
of four different  transformations—  
SubBytes(), ShiftRows(),  MixColumns(), 
and AddRoundKey() — is applied  to the 
data  block (i.e., the state array). 
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The round  function  is per- formed  
iteratively 10, 12, or 14 times, depending 
on the key length.  Note  that  in the last 
round MixColumns() is not applied.  The 
four transfor- mations  are described  
briefly as follows [1]: 
• SubBytes():a nonlinear byte 

substitution that operates  
independently on each byte of the 
state  using a substitution table (the  
S- Box) 

• ShiftRows():a circular shifting 
operation on the rows of the state 
with different  numbers of bytes 
(offsets)  

• MixColumns():  the operation that   
mixes the bytes in each column by the 
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multiplication of the state with a fixed 
polynomial modulo x4 + 1. 
• AddRoundKey(): an XOR  
operation that adds a round  key to the 
state in each itera- tion, where the 
round  keys are generated during the 
key expansion  phase smoothly changing 
the other properties. The major properties 
of concern as far as a speech signal is 
concerned are its pitch and envelope 
information. 

The decryption  procedure of the AES is 
basi- cally the inverse of each 
transformation (InvSub- Bytes(), 
InvShiftRows(),  InvMixColumns(), and 
AddRoundKey()) in reverse order.  
However,  the order of InvSubBytes() 
and InvShiftRows()  is indifferent. The 
decryption  procedure thus can be 
rearranged as shown in Fig. 1, where  
the InvRoundKey is obtained by applying 
InvMix- Columns()  to the respective  
original RoundKey [1]. Such a structural 
similarity in both the encryption  and 
decryption  procedures makes hardware  
implementation easier. 

The SubBytes() transformation (S-Box 
opera- tion),  which consists of 
amultiplicative  inverse over GF(28) and 
an affine transform,  is the most critical 
part of the AES algorithm in terms of 
computational complexity. However,  the 
S-Box operation is required  for both 
encryption  and key expansion.  
Conventionally,  the coefficients of the 
S-Box and inverse S-Box are stored  in 
the LUTs, or a hard-wired  
multiplicative  inverter over GF(28) can 
be used, together  with an affine 
transform circuit. A dedicated inverter,  
however, has a high area  overhead.  We 
propose  an effi- cient implementation 
by a transformation of the S-Box over 
the finite field. 

METHODOLOGY 
Composite Field Arithmetic 

The non-LUT-based implementations of the 
AES algorithm are able to exploit the 
advantage of subpipelining further. Never- 
theless, these approaches may have high 
hardware complexities. Although two 
Galois Fields of the same order are 
isomorphic, the complexity of the field 

operations may heavily depend on the 
representations of the field elements. 
Composite field arith- metic can be 
employed to reduce the hardware 
complexity. We call two pairs  

 

 
 

and a composite field [12] if 

• GF(2n) is constructed from by GF(2) 
Q(y) 

• GF ((2n)m) is constructed from by 
GF(2n) P(x).  

 
Composite fields will be denoted by , 
GF ((2n)m) and   a composite field GF 
((2n)m) is isomorphic to the field GF(2k) for 
=nm. Additionally, composite fields can be 

built iteratively from  lower order fields. For 
example, the composite field GF(28 ) of 
can be built  iteratively from GF(2) using the 
following irreducible polynomials [7]: 
GF ( ) → GF                 
GF  → GF ( )           
GF  → GF    
Where φ =  and λ =  
Meanwhile, an isomorphic mapping function 

 and its inverse need to be applied to 
map the  representation of an element in 
GF(28 ) to its composite field and vice versa. 
The 8 × 8 binary matrix   are decided by the 
field polynomial GF(28 ) of and its  
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Fig. 1.   The  AES algorithm. (a) Encryption structure. (b) Equivalent decryption structure. 
 
composite fields. Such a matrix can be 
found by the exhaustive-search- based 
algorithm in [12].The  matrix 
corresponding to p(x)= x8+x4+x3+x+1 and the 
field polynomials in (7) can be found as 
below: 

                  
  
Taking  the  isomorphic  mapping  into  
consideration,  not all  the  transformations  
in  the  AES  algorithm  are  suitable to  be  
implemented in  the  composite field. In  
order  to  fa- cilitate substructure sharing, 
the constant multiplications in the 
MixColumns/InvMixColumns 
transformation are im- plemented  by  first 
computing {02}16 Si,j  {04} 16, Si,j  and {08}16, 
Si,j then  adding  those  terms  corresponding  
to  the nonzero bits in the constants. For 
example, the constant mul- triplication of 
{0b} 16  ={00001011}2 can be computed by 
adding Si,j, {02} S i,j  and {08}16 Si,j . In this  

 
approach, the {02}16 {02} 16 Si,j  {04} 16, Si,j  

and {08}16, Si,j can be computed by 
adding.In this approach, the and can be 
computed once and shared by all the 
constant multiplications. Meanwhile, the 
number of terms, which need to be added is 
determined by the number of nonzero bits in 
the constants. Using the δ matrix defined in 
(8), constant multiplications of {02}16 and 
{03} 16 in GF(28)  in the MixColumns are 
mapped to constant   multiplicatios of {5f}16 
 and {5e}16 in the composite field,  
respectively. Although  the  hardware  
overhead of  the mapping of constants can 
be eliminated by computing the mapping 
beforehand, the composite field 

representations of {02}16 and {03}16 have 
more nonzero bits, which makes the 
constant multiplications more expensive. 
The same argument also holds for the 
constant multiplications used in the InvMix-
Columns transformation, where {09}16, 

{0b} 16, and {0e}16  are mapped to {75}16, 

{2α} 16, and {57}16 in the composite field, 
respectively. The only exception is that the 
composite field representation of {0d}16, 

which is {09}16 has one less nonzero bit, but  
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Fig. 3.   Implementation of the SubBytes Transformation

 
this is offset by the larger number of 
nonzero bits in the composite field  
representations of the other three constants. 
Furthermore {10}16 Si,j  {20} 16, Si,j  and {10}16 

Si,j a l s o  n eed  t o  b e  co m p u t ed  as  a  
r es u l t  o f  t h e  h i gh e r  w e i gh t  
n o nz e ro  b i t s  i n  {75}16,  {2α} 16, and 
{57} 16  which adds more complexity to the  
hardware implementations. Therefore, it is 
more efficient to implement the 
MixColumns/InvMixColumns in the original 
field GF(28). The ShiftRows/InvShiftRows is 
a trivial transformation, only cyclical 
shifting is involved, and thus its  
implementation does not depend on the 
representa- tion of  Galois Field elements. 
Meanwhile, the field addition, which  is  
simply XOR  operation, has the same 
complexity in the  composite field and the 
original field. Additionally, the affine/inverse 
affine  transformation  can  be  combined  
with the inverse isomorphic/isomorphic 
mapping. Based on the above observations, 
it is more efficient to carry out only the 
multiplicative inversion in the 
SubBytes/InvSubBytes in the composite 
field, while keep the rest of the 
transformations in the original field GF(28). 
 

SIMULATION AND RESULTS 
 

In this Section, FPGA implementation 
and results of given architectures for S-
box implemented on Xilinx XC3S400-5 
device are listed. Xilinx ISE 9.2 is used 
to synthesize the design and provide 
post placement timing results. Table 
below showing the area consumed by 
various s-box architectures: 

 
SBOX REGISTER   XOR 

PCT-BASED 133 954 

GF- BASED 92 100 

Table 1: Comparison of Various S-box architecture 
. 

CONCLUSION 

 
In this paper, the AES algorithm are 
presented. In order to explore the 
SubBytes/InvSubBytes is imple- mented by 
combinational logic to avoid the 
unbreakable delay of LUTs in the traditional 
designs. Additionally, composite field 
arithmetic is used to reduce the hardware 
complexity and different approaches for the 
implementation of inversion in  subfield are  
compared.  As  an  example  of  our 
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proposed  architecture,  fully  subpipelined  
encryptors  using 128-bit key are 
implemented on FPGA devices. 
Decryptors can be easily incorporated by 
using the encryptor/decryptor round unit 
architecture presented in this paper, and 
we expect the throughput will be slightly 
lower than the encryptor-only 
implementations. Meanwhile, using other 
key  lengths can be implemented by 
adding more copies of round units and 
modifying the key expansion unit slightly. 
Furthermore, the number of round units in 
a loop can be reduced to meet the 
requirements of small area applications. 
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