
[Gupta et al., 3(1): Jan-Mar., 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 1: Jan.-Mar.: 2013,86-90

 INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES
&

MANAGEMENT

A VHDL Implementation of Low Area Advance Encryption
Standard Processor

 Nimmi Gupta
Lakshmi Narain College of Technology, Bhopal(M.P), India

ABSTRACT

In this work our aim to achieve a high through put compact. AES S-Box with
minimum area consumption. To improve architectures are proposed for
implementation of S-Box and Inverse S-box needed in the Advanced Encryption Standard
(AES). Unlike previous work which rely on look-up table to implement the Subbytes and
Invsubbytes transformations of the AES algorithm the proposed design employs
Combinational logic only for implementing Subbytes (S-Box) and InvsubBytes (Inverse S-
Box). The resulting hardware requirements are presented for proposed design and
compared by ROM- based and Pre-Computation technique and improve with this two
technique a new technique is Galois field arithmetic.
Keywords- Advanced Encryption Standard, VLSI architectures, Data Encryption, S-Box,
Sub-byte Encryption

INTRODUCTION
The AES algorithm is a symmetric block
cipher that processes data blocks of
128 bits using a cipher key of length
128, 192, or 256 bits. Each data block
consists of a 4 × 4 array of bytes called the
state, on which the basic operations of
the AES algorithm are performed. The
AES encryp- tion/decryption procedure
is shown in Fig. 1. After an initial round
key addition, a round func- tion consisting
of four different transformations—
SubBytes(), ShiftRows(), MixColumns(),
and AddRoundKey() — is applied to the
data block (i.e., the state array).

Corresponding Author*
Email- nimmi.gupta877@gmail.com

The round function is per- formed
iteratively 10, 12, or 14 times, depending
on the key length. Note that in the last
round MixColumns() is not applied. The
four transfor- mations are described
briefly as follows [1]:
• SubBytes():a nonlinear byte

substitution that operates
independently on each byte of the
state using a substitution table (the
S- Box)

• ShiftRows():a circular shifting
operation on the rows of the state
with different numbers of bytes
(offsets)

• MixColumns(): the operation that
mixes the bytes in each column by the

[Gupta et al., 3(1): Jan-Mar., 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 1: Jan.-Mar.: 2013,86-90

multiplication of the state with a fixed
polynomial modulo x4 + 1.
• AddRoundKey(): an XOR
operation that adds a round key to the
state in each itera- tion, where the
round keys are generated during the
key expansion phase smoothly changing
the other properties. The major properties
of concern as far as a speech signal is
concerned are its pitch and envelope
information.

The decryption procedure of the AES is
basi- cally the inverse of each
transformation (InvSub- Bytes(),
InvShiftRows(), InvMixColumns(), and
AddRoundKey()) in reverse order.
However, the order of InvSubBytes()
and InvShiftRows() is indifferent. The
decryption procedure thus can be
rearranged as shown in Fig. 1, where
the InvRoundKey is obtained by applying
InvMix- Columns() to the respective
original RoundKey [1]. Such a structural
similarity in both the encryption and
decryption procedures makes hardware
implementation easier.

The SubBytes() transformation (S-Box
opera- tion), which consists of
amultiplicative inverse over GF(28) and
an affine transform, is the most critical
part of the AES algorithm in terms of
computational complexity. However, the
S-Box operation is required for both
encryption and key expansion.
Conventionally, the coefficients of the
S-Box and inverse S-Box are stored in
the LUTs, or a hard-wired
multiplicative inverter over GF(28) can
be used, together with an affine
transform circuit. A dedicated inverter,
however, has a high area overhead. We
propose an effi- cient implementation
by a transformation of the S-Box over
the finite field.

METHODOLOGY
Composite Field Arithmetic

The non-LUT-based implementations of the
AES algorithm are able to exploit the
advantage of subpipelining further. Never-
theless, these approaches may have high
hardware complexities. Although two
Galois Fields of the same order are
isomorphic, the complexity of the field

operations may heavily depend on the
representations of the field elements.
Composite field arith- metic can be
employed to reduce the hardware
complexity. We call two pairs

and a composite field [12] if

• GF(2n) is constructed from by GF(2)
Q(y)

• GF ((2n)m) is constructed from by
GF(2n) P(x).

Composite fields will be denoted by ,
GF ((2n)m) and a composite field GF
((2n)m) is isomorphic to the field GF(2k) for
=nm. Additionally, composite fields can be

built iteratively from lower order fields. For
example, the composite field GF(28) of
can be built iteratively from GF(2) using the
following irreducible polynomials [7]:
GF () → GF
GF → GF ()
GF → GF
Where φ = and λ =
Meanwhile, an isomorphic mapping function

 and its inverse need to be applied to
map the representation of an element in
GF(28) to its composite field and vice versa.
The 8 × 8 binary matrix are decided by the
field polynomial GF(28) of and its

[Gupta et al., 3(1): Jan-Mar., 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 1: Jan.-Mar.: 2013,86-90

Fig. 1. The AES algorithm. (a) Encryption structure. (b) Equivalent decryption structure.

composite fields. Such a matrix can be
found by the exhaustive-search- based
algorithm in [12].The matrix
corresponding to p(x)= x8+x4+x3+x+1 and the
field polynomials in (7) can be found as
below:

Taking the isomorphic mapping into
consideration, not all the transformations
in the AES algorithm are suitable to be
implemented in the composite field. In
order to fa- cilitate substructure sharing,
the constant multiplications in the
MixColumns/InvMixColumns
transformation are im- plemented by first
computing {02}16 Si,j {04} 16, Si,j and {08}16,
Si,j then adding those terms corresponding
to the nonzero bits in the constants. For
example, the constant mul- triplication of
{0b} 16 ={00001011}2 can be computed by
adding Si,j, {02} S i,j and {08}16 Si,j . In this

approach, the {02}16 {02} 16 Si,j {04} 16, Si,j

and {08}16, Si,j can be computed by
adding.In this approach, the and can be
computed once and shared by all the
constant multiplications. Meanwhile, the
number of terms, which need to be added is
determined by the number of nonzero bits in
the constants. Using the δ matrix defined in
(8), constant multiplications of {02}16 and
{03} 16 in GF(28) in the MixColumns are
mapped to constant multiplicatios of {5f}16
 and {5e}16 in the composite field,
respectively. Although the hardware
overhead of the mapping of constants can
be eliminated by computing the mapping
beforehand, the composite field

representations of {02}16 and {03}16 have
more nonzero bits, which makes the
constant multiplications more expensive.
The same argument also holds for the
constant multiplications used in the InvMix-
Columns transformation, where {09}16,

{0b} 16, and {0e}16 are mapped to {75}16,

{2α} 16, and {57}16 in the composite field,
respectively. The only exception is that the
composite field representation of {0d}16,

which is {09}16 has one less nonzero bit, but

[Gupta et al., 3(1): Jan-Mar., 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 1: Jan.-Mar.: 2013,86-90

Fig. 3. Implementation of the SubBytes Transformation

this is offset by the larger number of
nonzero bits in the composite field
representations of the other three constants.
Furthermore {10}16 Si,j {20} 16, Si,j and {10}16

Si,j a l s o n eed t o b e co m p u t ed as a
r es u l t o f t h e h i gh e r w e i gh t
n o nz e ro b i t s i n {75}16, {2α} 16, and
{57} 16 which adds more complexity to the
hardware implementations. Therefore, it is
more efficient to implement the
MixColumns/InvMixColumns in the original
field GF(28). The ShiftRows/InvShiftRows is
a trivial transformation, only cyclical
shifting is involved, and thus its
implementation does not depend on the
representa- tion of Galois Field elements.
Meanwhile, the field addition, which is
simply XOR operation, has the same
complexity in the composite field and the
original field. Additionally, the affine/inverse
affine transformation can be combined
with the inverse isomorphic/isomorphic
mapping. Based on the above observations,
it is more efficient to carry out only the
multiplicative inversion in the
SubBytes/InvSubBytes in the composite
field, while keep the rest of the
transformations in the original field GF(28).

SIMULATION AND RESULTS

In this Section, FPGA implementation
and results of given architectures for S-
box implemented on Xilinx XC3S400-5
device are listed. Xilinx ISE 9.2 is used
to synthesize the design and provide
post placement timing results. Table
below showing the area consumed by
various s-box architectures:

SBOX REGISTER XOR

PCT-BASED 133 954

GF- BASED 92 100

Table 1: Comparison of Various S-box architecture
.

CONCLUSION

In this paper, the AES algorithm are
presented. In order to explore the
SubBytes/InvSubBytes is imple- mented by
combinational logic to avoid the
unbreakable delay of LUTs in the traditional
designs. Additionally, composite field
arithmetic is used to reduce the hardware
complexity and different approaches for the
implementation of inversion in subfield are
compared. As an example of our

[Gupta et al., 3(1): Jan-Mar., 2013] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 3, Issue 1: Jan.-Mar.: 2013,86-90

proposed architecture, fully subpipelined
encryptors using 128-bit key are
implemented on FPGA devices.
Decryptors can be easily incorporated by
using the encryptor/decryptor round unit
architecture presented in this paper, and
we expect the throughput will be slightly
lower than the encryptor-only
implementations. Meanwhile, using other
key lengths can be implemented by
adding more copies of round units and
modifying the key expansion unit slightly.
Furthermore, the number of round units in
a loop can be reduced to meet the
requirements of small area applications.

REFERENCES

[1] National Bureau of Standards, Data
Encryption Standard (DES), US
Department of Commerce. Federal
Information Processing Standards
Publication 46 (FIPS PUB 46), 15
January 1977.

[2] RSA Security. RSA’s DES
Challenge III is solved in record
time. Available at
http://www.rsa.com/rsalabs/node.asp
?id=2108 , 18 January 1999.

[3] National Institute of Standards and
Technology, US Department of
Commerce. Commerce Department
announces winner of Global
Information Security Competition.

Available at October 2000
.http://www.nist.gov/public_affairs/r
eleases/g00-176.cfm , 2

[4] National Institute of Standards and
Technology, US Department of
Commerce. Federal Information
Processing Standards Publication

197 (FIPS PUB 197). Available at
http://csrc.nist.gov/publications/fips/f
ips197/fips-197.pdf , 26 November
2001.

[5] IBM Corp., IBM 4764 product and
PCIXCC feature overview. Available
at: http://www-
03.ibm.com/security/cryptocards/pci
xcc/overview.shtml, 2008.

[6] NXP Corp., NXP takes lead on
security for contactless smart cards
[Online]. Available at:
http://www.nxp.com/news/content/fil
e_1273.html, 2008

[7] Altera Corp., Stratix IV device
handbook. Availableat:
http://www.altera.com/literature/hb/s
tratix-iv/stratix4_handbook.pdf ,
November, 2008.

[8] Altera Corp. Quartus II development
software literature: Power-Play
power analysis. Available at:
http://www.altera.com/literature/hb/q
ts/qts_qii5v3_03.pdf, November,
2008.

[9] P. Hamalainen, M. Hannikainen and
T. Hamalainen, "Review of
Hardware Architectures for
Advanced Encryption Standard
Implementations Considering
Wireless Sensor Networks,"
Embedded Computer Systems:
Architectures, Modeling, and
Simulation, pp. 443-453, 2007.

[10] D. Raths., Energy hogs on the
server farm [Online]. Available at:
http://www.govtech.com/pcio/10297
0?id=102970&full=1&story_pg=1 ,
December 19, 2006.

